Gitika Gorthi

Founder/CEO of IgnitedThinkers

Who Am I?

A NORMAL, TEEN GIRL STUDENT

My first rocket launch

Founder/CEO of IgnitedThinkers

www.ignitedthinkers.org spreadingrocketrytogether@gmail.com

Space Needs to Become **Accessible** to **ALL**

Vision for IgnitedThinkers

Space Clubs in Every School

Space Education into Every <u>School</u> <u>Curriculum</u>

Illustrate **Diversity**

(in workforce, job opportunities, and skill sets)

IgnitedThinkers Inspire, Ignite, & Educate

Aerospace Medicine

Importance of Aerospace Medicine

- Protect Astronaut health
- Enables deep-space human space exploration
- Helps us understand human diseases/conditions better

My Research

NASA Ames Research Center GeneLab Intern

Finding the Beat: Analyzing the Role of Actin on Cardiac Dysfunction in Microgravity

Benefits of Studying Drosophila

Well-Defined and Conserved Genes

Short Lifespans

Small Size

1111	huduu	duuluu	hulu	huuhuu	huluu	huduu	hulu	huduu	սողու	daulau
0	1	2	3	4	5	6	7	8	9	10
21	ų			oı			6		8	
	11	1	1	1				T		

1 week fly (~10 years old in human years)

7 week old fly (~70 years old in human years)

K.Ocorr & R.Bodmer

Data Analysis – Volcano Plot Filtered for Significant Adjusted p-Value and FC

GenelD

FBgn0000045

FBgn0000047

Base Mean

93.6646975

96.9951563

Act88F & Act79B's Role in the Dataset

"Prolonged Exposure to Microgravity Reduces Cardiac Contractility and Initiates Remodeling in Drosophila"

(Walls et al., 2020)

Key Takeaways:

- Genes play a role in cardiac sarcomeric function in Dme
- Orthologs to human ACTB gene

Relation Between Act88F & Act79b

"Absence of the Drosophila Jump Muscle Actin Act79B is Compensated by Up-regulation of Act88F"

Dohn, Tracy E., and Richard M. Cripps. "Absence of the Drosophila Jump Muscle Actin Act79B Is Compensated by up-Regulation of Act88F." Developmental Dynamics, vol. 247, no. 4, 2018, pp. 642–649., doi:10.1002/dvdy.24616.

Key Takeaways:

- Act88F compensates for Act79B on Earth
- Act88F can enable jump muscle function itself

Act88F and Act79B are both downregulated in *microgravity*

Human Ortholog of Act88F and Act79B

Key Takeaways:

ACTG1 is the main human paralog

 ACTG1 is related directly to the cardiovascular system

Knowledge Gaps

Past Research

- Act88F compensates for Act79B on Earth
- ACTG1 is a human ortholog for the Act79B and Act88F genes

Gap

- What happens when both are downregulated?
- How are the gene ACTG1 affected by microgravity conditions?
- What role does ACTG1 gene play in cardiac health/function?

Hypothesis

Microgravity downregulates the key actin genes Act88F and Act79B, leading to reduced cardiac contractility and impaired cardiac function.

Aim #1

Gap

Only looked at the compensatory relationship between Act88F and Act79B.

Aim

Investigate the effects on contractility caused by downregulation of both Act88F and Act79B that is seen in microgravity environments.

Act88F

Act79B

Aim 1 Expectation

• Less efficient cardiac contractility in Drosophila due to downregulation of the actin genes

Aim #2

Gap: How is the human ortholog gene ACTG1 affected by microgravity conditions? What role does the ACTG1 gene play in cardiac health/function?

Part 1

Analyze the effects of microgravity on the ACTG1 gene

Part 2

Study the implications ACTG1 has on cardiac health

Aim 2 Expectation

• **Part 1**: Downregulation of the ACTG1 gene

 Part 2: Detrimental effect to cardiovascular health → Large amounts of cell death

Experiment Overview

- Further analyze Act88F and Act79B relationship
- Understand impact of down-regulation of Act88F and Act79B on contractility

 Analyze human ortholog ACTG1 for human health applications

Space & Earth Based Significance of Research

Future Studies and Outlook

- Understanding further highly conserved paralogs and homologs
 - ACTB
- Unmasking asymptomatic cardiovascular diseases
- Examine cardiac output in Drosophila and humans

Thank You! Questions?